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Abstract

A combined analytical–numerical study for the creeping flow caused by a spherical fluid or solid particle with a slip-flow
surface translating in a viscous fluid along the centerline of a circular cylindrical pore is presented. To solve the axisym-
metric Stokes equations for the fluid velocity field, a general solution is constructed from the superposition of the funda-
mental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the
pore wall by the Fourier transforms and then on the particle surface by a collocation technique. Numerical results for
the hydrodynamic drag force acting on the particle are obtained with good convergence for various values of the relative
viscosity or slip coefficient of the particle, the slip parameter of the pore wall, and the ratio of radii of the particle and pore.
For the motion of a fluid sphere along the axis of a cylindrical pore, our drag results are in good agreement with the avail-
able solutions in the literature. As expected, the boundary-corrected drag force for all cases is a monotonic increasing func-
tion of the ratio of particle-to-pore radii, and approaches infinity in the limit. Except for the case that the cylindrical pore is
hardly slip and the value of the ratio of particle-to-pore radii is close to unity, the drag force exerted on the particle
increases monotonically with an increase in its relative viscosity or with a decrease in its slip coefficient for a constant ratio
of radii. In a comparison for the pore shape effect on the axial translation of a slip sphere, it is found that the particle in a
circular cylindrical pore in general acquires a lower hydrodynamic drag than in a spherical cavity, but this trend can be
reversed for the case of highly slippery particles and pore walls.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The movement of a solid particle or fluid droplet through a continuous medium at low Reynolds numbers is
of much interest in the fields of chemical, biomedical, and environmental engineering and science. The major-
ity of these moving phenomena are fundamental in nature, but permit one to develop rational understanding
of many practical systems and industrial processes such as sedimentation, flotation, coagulation, meteorology,
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suspension rheology, and motion of blood cells in an artery or vein. The theoretical study of this subject has
grown out of the classic work of Stokes (1851) for a translating, no-slip, rigid sphere in an incompressible,
Newtonian fluid.

The creeping-flow translation of a single spherical fluid drop of radius a in an unbounded medium of vis-
cosity g was first analyzed independently by Hadamard (1911) and Rybczynski (1911). Assuming continuous
velocity and continuous tangential stress across the interface between the fluid phases in the absence of surface
active agents, they found that the drag force acting on the fluid sphere by the surrounding fluid is
F0 ¼ �6pga
3g� þ 2

3g� þ 3
U; ð1Þ
where U is the drop velocity and g* is the internal-to-external viscosity ratio. Since the fluid properties are arbi-
trary, Eq. (1) degenerates to the case of motion of a solid sphere (Stokes’ law) when the viscosity of the drop
becomes infinity and to the case of motion of a spherical gas bubble when the viscosity approaches zero.

In the general formulation of the Stokes problem, it is usually assumed that no slippage arises at the solid–
fluid interfaces. Actually, this is an idealization of the transport processes involved. The phenomena that the
adjacent fluid can slip frictionally over a solid surface, occurring for cases such as the low-density gas flow
surrounding an aerosol particle (Kennard, 1938; Hutchins et al., 1995), the aqueous liquid flow near a hydro-
phobic surface (Tretheway and Meinhart, 2002; Gogte et al., 2005), and the Newtonian fluid flow over a por-
ous surface (Beavers and Joseph, 1967; Saffman, 1971; Jones, 1973; Nir, 1976), have been confirmed, both
experimentally and theoretically. Presumably, any such slipping would be proportional to the local tangential
stress next to the solid surface (Happel and Brenner, 1983), known as the Navier slip (see Eqs. (19) and (20)),
at least as long as the velocity gradient is small. The constant of proportionality, b�1, is called a ‘‘slip coeffi-
cient’’. Basset (1961) found that the drag force exerted by the ambient fluid on a moving rigid sphere with a
slip-flow boundary condition at its surface is
F0 ¼ �6pga
baþ 2g
baþ 3g

U; ð2Þ
where U is the migration velocity of the particle. In the particular case of b!1, there is no slip at the particle
surface and Eq. (2) degenerates to Stokes’ law. When b = 0, there is a perfect slip at the particle surface and
Eq. (2) is identical to Eq. (1) taking g* = 0. Note that, as can be seen from Eqs. (1) and (2), the unbounded
flow field caused by the migration of a slip solid sphere is the same as the external flow field generated by the
same motion of a spherical fluid drop with a value of g* equal to the parameter ba/3g of the solid sphere.

The slip coefficient in Eq. (2) has been determined experimentally for various gas–solid systems and found
to agree with the general kinetic theory of gases. It can be calculated from the formula
g
b
¼ Cml; ð3Þ
where l is the mean free path of a gas molecule, and Cm is a dimensionless constant of the gas-kinetic slip,
which is semi-empirically related to the momentum accommodation coefficient fm at the solid surface by
Cm � (2 � fm)/fm (Kennard, 1938). Although Cm surely depends upon the nature of the surface and adjacent
fluid, an examination of the experimental data and theoretical predictions suggests that it will be in the range
1.0–1.5 (Davis, 1972; Talbot et al., 1980; Sharipov and Kalempa, 2003). The quantity g/b is a length, which
can be pictured by noting that the fluid motion is the same as if the solid surface is displaced inward by a dis-
tance g/b with the velocity gradient extending uniformly right up to no-slip velocity at the surface. The reci-
procal of the factor (ba + 2g)/(ba + 3g) in Eq. (2) is equivalent to the so-called Cunningham correction factor
for the slip effect.

In real situations of the low-Reynolds-number motion, particles or droplets usually are not isolated and
will move in the presence of neighboring boundaries. Using spherical bipolar coordinates, Bart (1968) and
Rushton and Davies (1973) examined the motion of a spherical fluid drop settling normal to a plane interface
between two immiscible viscous fluids. Wacholder and Weihs (1972) also utilized bipolar coordinates to study
the motion of a fluid sphere through another fluid normal to a no-slip or free planar surface; their calculations
agree with the results obtained by Bart in these limits. Recently, the slow motion of a fluid sphere perpendicular
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to two parallel plane walls at an arbitrary position between them has been investigated with the use of a bound-
ary collocation method (Chang and Keh, 2006). Numerical solutions for the hydrodynamic drag force acting
on the droplet were obtained as functions of g* and the respective relative distances from the droplet center to
the two plane walls.

On the other hand, Haberman and Sayre (1958) considered a spherical fluid droplet in axisymmetric motion
in a long tube filled with a viscous fluid and obtained a hydrodynamic drag solution using an approximate
technique of matching the two series-expansion solutions in the spherical and cylindrical coordinate frames
which is accurate only for about a/b 6 0.5, where a and b are the radii of the droplet and tube, respectively.
The wall effects experienced by a fluid sphere moving along the axis of a long tube were also examined by using
a reciprocal theorem (Brenner, 1971) and a numerical least-square method correct for a/b 6 0.75 (Coutanceau
and Thizon, 1981). Hyman and Skalak (1972) used a singularity technique to perform numerical computations
of the axisymmetric flow due to a train of equally spaced spherical droplets in a tube, considering the motion
as a function of the relative droplet separation, a/b, and g*, up to a/b = 0.8. Hetsroni et al. (1970) used a
method of reflections to solve for the terminal velocity of a fluid sphere settling axially at an arbitrary radial
location within a long tube. The parallel motion of a spherical droplet in a quiescent immiscible fluid at an
arbitrary position between two parallel plane walls was also studied by Shapira and Haber (1988) using a
method of reflections and by Keh and Chen (2001) using the boundary collocation technique.

The boundary effects on the motion of solid particles with finite values of ba/g are different, both physically
and mathematically, from those on fluid droplets of finite viscosities. Through an exact representation in
spherical bipolar coordinates, Reed and Morrison (1974) and Chen and Keh (1995) examined the creeping
motion of a rigid sphere normal to an infinite plane wall, where the fluid may slip at the solid surfaces. Later,
the quasisteady translation of a slip spherical particle in a slip spherical cavity was also theoretically studied
(Keh and Chang, 1998; Lu and Lee, 2001). An analytical expression for the wall-corrected drag force exerted
by the fluid on the particle located at the center of the cavity was derived in a closed form. Recently, the slow
translational and rotational motions of a slip sphere parallel (Chen and Keh, 2003) or perpendicular (Chang
and Keh, 2006) to two parallel plane walls at an arbitrary position between them have been examined using
the boundary collocation method. Numerical results for the hydrodynamic drag force and torque exerted
on the particle were obtained as functions of ba/g and the respective relative distances from the particle center
to the two plane walls.

The objective of this work is to obtain exact solutions for the slow translational motion of a spherical fluid
or solid particle along the centerline of a long circular cylindrical pore, where the fluid is allowed to slip at the
particle and pore surfaces. The creeping-flow equations applicable to the systems are solved by using a com-
bined analytical–numerical method with the boundary collocation technique (Leichtberg et al., 1976), and the
wall-corrected drag force acting on the particle by the fluid is obtained with good convergence for various
cases up to a/b = 0.995. Our calculations show very good agreement with the available solutions in the liter-
ature. Some comparisons for the pore shape effects on the axial translation of the slip particle are made.
2. Formulation for the motion of a fluid sphere along the axis of a circular cylindrical pore

In this section, we consider the steady creeping motion caused by a spherical fluid droplet of radius a trans-
lating with a velocity U = Uez in a second, immiscible fluid along the axis of a long circular cylindrical pore of
radius b, where b > a, as shown in Fig. 1. Here (q,/,z) and (r,h,/) denote the cylindrical and spherical coor-
dinate systems, respectively, with the origin at the droplet center, and ez is the unit vector in the z direction.
The external fluid is at rest far away from the droplet. The purpose is to determine the correction to Eq. (1) for
the motion of the droplet due to the presence of the pore wall.

Both of the fluids inside and outside the droplet are assumed to be incompressible and Newtonian. Owing
to the low Reynolds numbers, the fluid motion is governed by the steady fourth-order differential equations
for viscous axisymmetric creeping flows,
E2ðE2WÞ ¼ 0 ðr P aÞ; ð4aÞ
E2ðE2W1Þ ¼ 0 ðr 6 aÞ; ð4bÞ



Fig. 1. Geometric sketch of the translation of a spherical particle along the axis of a circular cylindrical pore.
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where W1 and W are the Stokes stream functions for the flow inside the droplet and for the external flow,
respectively, which are related to their corresponding velocity components in cylindrical coordinates by
vq ¼
1

q
oW
oz
; vz ¼ �

1

q
oW
oq

; ð5aÞ

v1q ¼
1

q
oW1

oz
; v1z ¼ �

1

q
oW1

oq
; ð5bÞ
and the Stokes operator E2 has the form
E2 ¼ q
o

oq
1

q
o

oq

� �
þ o2

oz2
: ð6Þ
The boundary conditions for the fluid flow field at the droplet surface, where both velocity and shear stress
are continuous, on the pore wall, and far away from the droplet are
r ¼ a : vq ¼ v1q; ð7aÞ
vz ¼ v1z; ð7bÞ
vq tan hþ vz ¼ U ; ð7cÞ
srh ¼ s1rh; ð7dÞ

q ¼ b : vq ¼ vz ¼ 0; ð8Þ
jzj ! 1 : vq ¼ vz ¼ 0: ð9Þ
Here, srh and s1rh are the viscous shear stresses for the external flow and the flow inside the droplet, respec-
tively. The capillary number gU/c (and thus the smaller Weber number aqfU

2/c, where qf is the density of
the external fluid) is assumed to be sufficiently small (say, less than 0.1) so that the interfacial tension c is fairly
large to maintain the spherical shape of the droplet during the confined migration.

To solve the external flow field, we express the stream function, which is symmetric about the plane z = 0, in
the form
W ¼ Ww þWp: ð10Þ
Here Ww is a separable solution of Eq. (4a) in cylindrical coordinates that represents the disturbance produced
by the pore wall and is given by a Fourier–Bessel integral (Leichtberg et al., 1976),
Ww ¼
Z 1

0

½X ðxÞqI1ðxqÞ þ Y ðxÞq2I0ðxqÞ� cosðxzÞdx; ð11Þ
where X(x) and Y(x) are unknown functions of the separation variable x. The second part of W, denoted by
Wp, is a separable solution of Eq. (4a) in spherical coordinates representing the disturbance generated by the
droplet and is given by
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Wp ¼
X1
n¼2

ðBnr�nþ1 þ Dnr�nþ3ÞG�1=2
n ðcos hÞ ðn is evenÞ; ð12Þ
where G�1=2
n is the Gegenbauer polynomial of the first kind of order n and degree �1/2; Bn and Dn are un-

known constants. Note that boundary condition (9) is immediately satisfied by a solution of the form given
by Eqs. (10)–(12).

The general solution to Eq. (4b) for the internal flow field can be expressed as
W1 ¼
X1
n¼2

ðAnrn þ Cnrnþ2ÞG�1=2
n ðcos hÞ; ð13Þ
or
v1q ¼
X1
n¼2

Ana
ð1Þ
1n ðr; hÞ þ Cna

ð1Þ
2n ðr; hÞ

h i
; ð14aÞ

v1z ¼
X1
n¼2

Ana
ð2Þ
1n ðr; hÞ þ Cna

ð2Þ
2n ðr; hÞ

h i
ðn is evenÞ; ð14bÞ
where the definitions of the functions aðjÞin ðr; hÞ for i and j equal to 1 or 2 are given by Eqs. (A.1) and (A.2) in
Appendix A, and An and Cn are unknown constants. A solution of this form satisfies the requirement that the
velocity is finite for any position within the droplet.

Substituting the stream function W given by Eqs. (10)–(12) into boundary condition Eq. (8) and applying
the Fourier cosine transform on the variable z lead to a solution for the functions X(x) and Y(x) in terms of
the coefficients Bn and Dn. After the substitution of this solution back into Eqs. (10)–(12) and utilization of Eq.
(5a) and the integral representations of the modified Bessel functions, the external fluid velocity components
can be expressed as
vq ¼
X1
n¼2

Bnc
ð1Þ
1n ðr; hÞ þ Dnc

ð1Þ
2n ðr; hÞ

h i
; ð15aÞ

vz ¼
X1
n¼2

Bnc
ð2Þ
1n ðr; hÞ þ Dnc

ð2Þ
2n ðr; hÞ

h i
; ð15bÞ
where n is even and the definitions of the functions cðjÞin ðr; hÞ for i and j equal to 1 or 2 are given by Eqs. (A.3)
and (A.4) (in integral forms which must be evaluated numerically) taking bw!1.

The only boundary conditions that remain to be satisfied are those on the droplet surface. Substituting Eqs.
(14) and (15) into Eq. (7), one obtains
X1
n¼2

Bnc
ð1Þ
1n ða; hÞ þ Dnc

ð1Þ
2n ða; hÞ � Ana

ð1Þ
1n ða; hÞ � Cna

ð1Þ
2n ða; hÞ

h i
¼ 0; ð16aÞ

X1
n¼2

Bnc
ð2Þ
1n ða; hÞ þ Dnc

ð2Þ
2n ða; hÞ � Ana

ð2Þ
1n ða; hÞ � Cna

ð2Þ
2n ða; hÞ

h i
¼ 0; ð16bÞ

X1
n¼2

Bn cð1Þ1n ða; hÞ tan hþ cð2Þ1n ða; hÞ
h i

þ Dn cð1Þ2n ða; hÞ tan hþ cð2Þ2n ða; hÞ
h in o

¼ U ; ð16cÞ

X1
n¼2

Bnc
�
1nða; hÞ þ Dnc

�
2nða; hÞ � g�Ana

�
1nða; hÞ � g�Cna

�
2nða; hÞ

� �
¼ 0; ð16dÞ
where the functions a�inðr; hÞ and c�inðr; hÞ for i = 1 or 2 are defined by Eqs. (A.11) and (A.12) (in which the
integration must be performed numerically) taking bw!1.

To satisfy the conditions in Eq. (16) exactly along the entire surface of the droplet would require the solu-
tion of the entire infinite array of unknown constants An, Cn, Bn, and Dn. However, the collocation method
(O’Brien, 1968; Leichtberg et al., 1976) enforces the boundary conditions at a finite number of discrete
points on the quarter-circular longitudinal arc of the sphere (from h = 0 to h = p/2, owing to the symmetry
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of the system geometry) and truncates the infinite series in Eqs. (13)–(15) into finite ones. If the spherical
boundary is approximated by satisfying the conditions in Eq. (7) at N discrete points on the generating
arc, the infinite series in Eqs. (13)–(15) are truncated after N terms, resulting in a system of 4N simultaneous
linear algebraic equations in the truncated form of Eq. (16). This matrix equation can be numerically solved
to yield the 4N unknown constants An, Cn, Bn, and Dn required in the truncated form of Eqs. (14) and (15).
The fluid velocity field is completely obtained once these coefficients are solved for a sufficiently large num-
ber of N. The accuracy of the boundary-collocation/truncation technique can be improved to any degree by
taking a sufficiently large value of N. Naturally, as N!1, the truncation error vanishes and the overall
accuracy of the solution depends only on the numerical integration required in evaluating the functions
cðjÞin and c�in in Eq. (16).

The drag force F = Fez exerted by the fluid on the droplet can be determined from (Happel and Brenner,
1983)
F ¼ 4pgD2: ð17Þ

This expression shows that only the lowest-order coefficient D2 contributes to the hydrodynamic force acting
on the droplet.

3. Solutions for the motion of a fluid sphere along the axis of a circular cylindrical pore

The numerical results for the creeping motion of a spherical fluid droplet of an arbitrary viscosity along the
axis of a circular cylindrical pore, obtained by using the boundary collocation method described in the previ-
ous section, are presented in this section. The system of linear algebraic equations to be solved for the coef-
ficients An, Cn, Bn, and Dn is constructed from Eq. (16). All the numerical integrations to evaluate the
functions cðjÞin and c�in were done by using the method of Gauss-Laguerre quadrature and, for cases of
a/b P 0.9, two million points (zeros and weight factors) are needed to obtain convergent results.

When specifying the points along the quarter-circular generating arc of the fluid sphere (with a constant
value of /) where the boundary conditions are to be exactly satisfied, the first point that should be chosen
is h = p/2, since this point defines the projected area of the droplet normal to the direction of motion and con-
trols the gap between the droplet and the pore wall. In addition, the point h = 0 is also important. However,
an examination of the system of linear algebraic equations in Eq. (16) shows that the matrix equation becomes
singular if these points are used. To overcome this difficulty, these points are replaced by closely adjacent
points, i.e., h = d and p/2 � d (Leichtberg et al., 1976). Additional points along the boundary are selected
to divide the quarter-circular arc of the droplet into equal segments. The optimum value of d in this work
is found to be 0.01�, with which the numerical results of the hydrodynamic drag force acting on the particle
converge satisfactorily.

The collocation solutions for the hydrodynamic drag force exerted on a fluid sphere translating along the
axis of a circular cylindrical pore for various values of a/b and g* are presented in Table 1 and Figs. 2 and 3.
The drag force F0 acting on an identical droplet in an unbounded fluid, given by Eq. (1) (with F0 = F0ez), is
used to normalize the boundary-corrected values. Evidently, F/F0 = 1 as a/b = 0 for any given value of g*. The
accuracy and convergence behavior of the collocation/truncation technique depends principally upon the ratio
a/b. All of the results obtained under this numerical scheme converge to at least the significant figures as
shown in the table. For the difficult case of a/b = 0.995, the number of collocation points N = 56 is sufficiently
large to achieve this convergence.

Through some approximate approaches in which the real external boundary of the flow in the infinitely
long tube is replaced by a part of the lateral surface of the tube completed by two perpendicular cross sections
situated at a finite distance from the particle, Hyman and Skalak (1972) and Coutanceau and Thizon (1981)
obtained numerical solutions for the normalized hydrodynamic drag force acting on a fluid sphere moving
along the axis of a circular tube. These solutions, which are available up to a/b = 0.8, are also presented in
Table 1 for comparison. It can be seen that our collocation results agree very well with these numerical solu-
tions. For the special case of a rigid sphere (with g*!1), our results also agree quite well with the previous
solutions obtained by a method of reflection (Happel and Brenner, 1983) and by a similar boundary colloca-
tion method available up to a/b = 0.7 (Leichtberg et al., 1976).



Table 1
Collocation results for the normalized drag force F/F0 experienced by a spherical droplet translating along the axis of a circular cylindrical
pore at various values of a/b and g*

a/b F/F0

g* = 0 g* = 1 g* = 10 g*!1
0.1 1.16319 (1.164) 1.21114 (1.211) 1.25341 (1.253) 1.26321 (1.263)
0.2 1.38994 (1.391) 1.52091 (1.520) 1.64822 (1.648) 1.67948 (1.680)
0.25 1.53977 [1.5398] 1.73147 [1.7315] 1.92886 1.97908 [1.9796]
0.3 1.72510 (1.725) 1.99514 (1.996) 2.29156 (2.291) 2.37009 (2.370)
0.4 2.26263 (2.264) 2.76467 (2.765) 3.40436 (3.404) 3.59137 (3.592)
0.5 3.22243 (3.222) 4.11972 (4.123) 5.49200 (5.493) 5.94737 (5.949)

[3.223] [4.120] [5.950]
0.6 5.20429 (5.205) 6.80703 (6.809) 9.88657 (9.891) 11.0919 (11.10)
0.7 10.2577 (10.26) 13.2196 (13.22) 20.9143 (20.93) 24.6759 (24.70)
0.75 16.1519 [16.2] 20.2758 [20.3] 33.3467 40.7267 [40.7]
0.8 28.5678 (28.59) 34.4183 (34.48) 58.4536 (58.64) 74.669 (74.97)
0.9 173.333 182.944 314.42 469.18
0.95 1038.9 995.4 1590 2807
0.975 6079 5478 7.86E3 1.63E4
0.99 6.10E4 5.24E4 6.53E4 1.59E5
0.995 3.3E5 2.8E5 3.2E5 8.0E5

The values in parentheses obtained by Hyman and Skalak (1972) and in brackets obtained by Coutanceau and Thizon (1981) are listed for
comparison.

Fig. 2. Plots of the normalized drag force F/F0 acting on a spherical droplet translating along the axis of a circular cylindrical pore versus
the ratio a/b with g* as a parameter (solid curves). The dashed and dotted-dashed curves are plotted for the corresponding translation of
an identical droplet situated at the center of a spherical cavity and situated midway between two parallel plane walls, respectively, for
comparison.
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As expected, the results in Table 1 and Figs. 2 and 3 illustrate that the hydrodynamic drag force acting on
the droplet is a monotonic increasing function of a/b, and will become infinite in the limit a/b = 1, for any
given value of g*. For cases that the radii of the droplet and pore are not too close (say, a/b < 0.9), the nor-
malized wall-corrected drag force exerted on the droplet increases monotonically with an increase in g*, keep-
ing a/b unchanged. Interestingly, when the value of a/b is very close to unity (say, greater than about 0.9), F/F0

first decreases with an increase in g* from g* = 0, reaches a minimum at some finite value of g*, and then
increases with an increase in g* to the limit g*!1.



Fig. 3. Plots of the normalized drag force F/F0 acting on a spherical droplet translating along the axis of a circular cylindrical pore versus
its relative viscosity g* with a/b as a parameter (solid curves). The dashed curves are plotted for the translation of an identical droplet
situated at the center of a spherical cavity for comparison.
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For the instantaneous translational motion of a spherical fluid droplet of radius a situated at the center of a
spherical cavity of radius b, the normalized drag force exerted on the droplet by the surrounding fluid was
analytically obtained as (Happel and Brenner, 1983)
F
F 0

¼ 1� g�3

g2

k5

� �
1� 9g2

4g3

kþ 15g�

2g3

k3 � 9g�2

4g3

k5 þ g�3

g3

k6

� ��1

; ð18Þ
where gi = 3g* + i and k = a/b. On the other hand, the steady translation of a fluid sphere parallel to two plane
walls at an arbitrary position between them has been examined by using the boundary collocation technique
and numerical solutions for the hydrodynamic drag force acting on the droplet were obtained as functions of
g* and the relative distances from the droplet center to the two plane walls (Keh and Chen, 2001). This drag
force for the case that the droplet is situated midway between the two walls separated by a distance 2b and the
drag result of Eq. (18) for the case of the droplet in a spherical cavity are also plotted in Figs. 2 and/or 3 as a
comparison basis for the pore shape effect. It can be seen that, for given values of the parameters g* and a/b,
the droplet in a circular cylindrical pore acquires a lower hydrodynamic drag force than in a spherical cavity
but a higher drag force than in a slit pore. This outcome is expected since a spherical cavity does not have an
open fluid space to relax the momentum buildup when the droplet is applied an external force, and this
momentum buildup can be relaxed in one and two principal directions for a circular cylindrical pore and a
slit pore, respectively. Analogous to the case in a cylindrical pore, F/F0 for the motion of a droplet located
at the center of a spherical cavity is also an increasing function of g* in general; when the value of a/b is close
to unity (say, greater than about 0.9), this normalized drag force first decreases with an increase in g* from
g* = 0, reaches a minimum at some finite value of g*, and then increases with increasing g* to the limit g*!1.

4. Formulation for the motion of a slip solid sphere along the axis of a slip cylindrical pore

The steady creeping motion caused by a solid spherical particle of radius a translating with a velocity
U = Uez in a quiescent incompressible and Newtonian fluid along the axis of a long circular cylindrical pore
of radius b, as shown in Fig. 1 again, is considered in this section. The fluid is allowed to slip at both the par-
ticle surface and the pore wall. Since the particle and pore are of different materials, they may have unequal
slip coefficients at the surfaces. The objective is to determine the correction to Eq. (2) for the motion of the
particle due to the presence of the pore wall.
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The governing equation, the boundary condition at infinity, and the sufficiently general solution for the
fluid flow are still given by Eqs. (4a), (9) and (10)–(12). Now, the boundary conditions for the fluid velocity
at the particle surface and pore wall become (Basset, 1961; Happel and Brenner, 1983)
r ¼ a : vq ¼
1

b
srh cos h; ð19aÞ

vz ¼ U � 1

b
srh sin h; ð19bÞ

q ¼ b : vq ¼ 0; ð20aÞ

vz ¼ �
1

bw
sqz; ð20bÞ
where srh and sqz are the viscous shear stresses for the fluid flow in the relevant coordinates, and 1/b and 1/bw

are the frictional slip coefficients about the surfaces of the particle and pore wall, respectively. Substituting the
stream function W given by Eqs. (10)–(12) into the boundary condition (20) and applying the Fourier cosine
transform on the variable z result in a solution for the functions X(x) and Y(x) in terms of the coefficients Bn

and Dn. After the substitution of this solution back into Eqs. (10)–(12) and utilization of Eq. (5a) and the inte-
gral representations of the modified Bessel functions, the fluid velocity components can still be expressed in the
form of Eq. (15), in which the functions cðjÞin ðr; hÞ for i and j equal to 1 or 2 are also defined by Eqs. (A.3) and
(A.4) but now dependent on the wall slip coefficient 1/bw.

The only boundary conditions that remain to be satisfied are those on the particle surface. Substituting Eq.
(15) into Eq. (19), one obtains
X1
n¼2

Bn cð1Þ1n ða; hÞ �
g
b

c�1nða; hÞ cos h

� �
þ Dn cð1Þ2n ða; hÞ �

g
b

c�2nða; hÞ cos h

� �� 	
¼ 0; ð21aÞ

X1
n¼2

Bn cð2Þ1n ða; hÞ þ
g
b

c�1nða; hÞ sin h

� �
þ Dn cð2Þ2n ða; hÞ þ

g
b

c�2nða; hÞ sin h

� �� 	
¼ U ; ð21bÞ
where the functions c�inðr; hÞ for iand j equal to 1 or 2 are also dependent on the wall slip coefficient 1/bw and
have been defined by Eq. (A.12).

Eq. (21) can also be satisfied by utilizing the boundary collocation technique presented in Section 2 for the
solution about a migrating droplet. At the particle surface, Eq. (21) is applied at N discrete points (values of h
between 0 and p/2) and the infinite series in Eqs. (15) and (21) are truncated after N terms. This generates a set
of 2N linear algebraic equations for the 2N unknown constants Bn and Dn. The fluid velocity field is com-
pletely obtained once these coefficients are solved for a sufficiently large number of N. Again, the hydrody-
namic drag force F = Fez acting on the spherical particle can be determined from Eq. (17).

5. Solutions for the motion of a slip solid sphere along the axis of a slip cylindrical pore

In Section 3, collocation solutions for the migration of a fluid sphere along the axis of a long circular cylin-
drical pore have been presented and were found to be in good agreement with the available solutions in the
literature. This section will examine the solutions for the corresponding motion of a slip solid sphere using the
same boundary collocation method. Now, the system of linear algebraic equations to be solved for the coef-
ficients Bn and Dn is constructed from Eq. (21).

The collocation solutions of the hydrodynamic drag force acting on a slip spherical particle translating
along the axis of a slip cylindrical pore for different values of the parameters ba/g, bwa/g, and a/b are presented
in Table 2 and Figs. 4 and 5. Here, the drag force F0 exerted on an identical particle in an unbounded fluid
given by Eq. (2) (with F0 = F0ez) is used to normalize the boundary-corrected values. Obviously, F/F0 = 1 as
a/b = 0 for any specified values of ba/g and bwa/g. All of the results obtained under the collocation scheme
converge satisfactorily to at least the significant figures shown in the table. For the special cases of translation
of a no-slip sphere (with ba/g!1) and of a perfectly slip sphere (with ba/g = 0) along the axis of a no-slip
cylindrical pore (with bwa/g!1), our numerical results are exactly the same as those presented in Table 1 for



Table 2
Collocation results for the normalized drag force F/F0 experienced by a spherical particle translating along the axis of a circular cylindrical
pore at various values of a/b, bw, and ba/g

a/b F/F0

ba/g = 0 ba/g = 0.1 ba/g = 1 ba/g = 10 ba/g = 30 ba/g!1
bw = 0 0.2 1.28429 1.28987 1.32880 1.43188 1.46244 1.48301

0.4 1.79341 1.81140 1.94294 2.35041 2.49145 2.59273
0.6 2.94404 2.99316 3.37349 4.85185 5.50927 6.04615
0.8 7.30773 7.48394 8.94210 16.8690 22.3431 28.5019
0.9 19.1777 19.7199 24.3799 56.5988 89.2703 146.07
0.95 52.0427 53.6351 67.6121 180.53 333.95 784.9
0.975 143.951 148.540 189.289 550.98 1151.2 4323
0.99 560.96 579.3 743.5 2300 5.312E3 4.17E4
0.995 1578.6 1631 2098 6638 1.597E4 2.3E5

bw = b 0.2 1.28429 1.29971 1.39014 1.58609 1.64185 1.67948
0.4 1.79341 1.83131 2.10471 2.99068 3.33141 3.59137
0.6 2.94404 3.04256 3.81055 7.25645 9.20702 11.0919
0.8 7.30773 7.68212 10.7322 29.4427 46.9213 74.669
0.9 19.1777 20.4029 30.5543 104.116 200.181 469.18
0.95 52.0427 55.7891 87.076 335.57 737.0 2807
0.975 143.951 155.004 247.69 1022.0 2444 1.63E4
0.99 560.96 605.9 983.3 4243 1.079E4 1.59E5
0.995 1578.6 1707 2786 1.220E4 3.17E4 8.0E5

bw!1 0.2 1.38994 1.39769 1.45243 1.60234 1.64821 1.67948
0.4 2.26263 2.28871 2.48508 3.15199 3.40365 3.59137
0.6 5.20429 5.27071 5.82728 8.47578 9.86146 11.0919
0.8 28.5678 28.6504 29.9541 44.2658 57.3319 74.669
0.9 173.333 172.287 168.989 218.18 296.47 469.18
0.95 1038.9 1027.5 968.95 1068.5 1416.6 2807
0.975 6079 5998 5538 5392 6631 1.63E4
0.99 6.10E4 6.01E4 5.47E4 4.82E4 5.30E4 1.59E5
0.995 3.3E5 3.3E5 3.0E5 2.5E5 2.6E5 8.0E5
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the cases of g*!1 and g* = 0, respectively, as they should be. However, the wall effect on the motion of a
slip sphere with a finite value of ba/g is different from that of a liquid droplet with a value of g* equal to ba/3g,
although the unbounded fluid flow field induced by the translation of a slip solid sphere is equivalent to the
external flow field caused by an isolated translating fluid droplet under this condition.

As expected, the results in Table 2 and Figs. 4 and 5 illustrate that the normalized drag force exerted on the
particle is a monotonic increasing function of a/b, and will become infinite in the limit a/b = 1, for any given
values of ba/g and bwa/g. The normalized drag force in general increases with an increase in ba/g and bwa/g
(or with a decrease in the slip coefficients b�1 and b�1

w ), keeping the other parameters unchanged. When the
cylindrical pore is hardly slip (with a large value of bwa/g) and the value of a/b is close to unity (say, greater
than about 0.9), however, F/F0 first decreases with an increase in ba/g from ba/g = 0, reaches a minimum at
some finite value of ba/g, and then increases with increasing ba/g to the limit ba/g!1; some examples can be
seen in Fig. 5b and Table 2.

For the quasisteady translational motion of a slip spherical particle of radius a situated at the center of a
slip spherical cavity of radius b, the normalized drag force exerted on the particle by the fluid was analytically
obtained as (Keh and Chang, 1998)
F
F 0

¼ f3

f2

ðf2g3 � f�3g�2k
5Þ f3g3 �

9

4
f2g2kþ

5

2
k3 � 9

4
f�2g�2k

5 þ f�3g�3k
6

� ��1

; ð22Þ
where fi = 1 + ig/ba, gi = 1 + ig/bwb, and k = a/b. This drag force is also plotted in Figs. 4b and 5 as a com-
parison. Under most conditions, the particle in a circular cylindrical pore acquires a lower hydrodynamic drag
than in a spherical pore. This trend, however, can be reversed for the case of highly slippery particles and pore



Fig. 4. Plots of the normalized drag force F/F0 acting on a slip solid sphere translating along the axis of a circular cylindrical pore versus
the ratio a/b with ba/g as a parameter: (a) the solid and dashed curves represent the cases of bw! 1 and bw = 0, respectively and (b) the
solid curves represent the case of bw = b, while the dashed curves are plotted for the translation of an identical particle situated at the
center of a spherical cavity for comparison.
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walls (with small values of ba/g and bwa/g, say, less than about unity), as illustrated by curve intersections for
each specified value of a/b in Fig. 5c–e. The smaller the value of bwa/g (ba/g) is, the greater value of ba/g (bwa/g)
the curve intersections will take place at. For the case of bwa/g = 0 and a/b 6 0.5, as indicated by Fig. 5e, the
fluid always exerts a smaller drag force on the particle in a spherical pore than in a cylindrical pore for any
fixed value of ba/g. This outcome indicates that the slippage of the pore wall is more influential than that
of the particle surface. Similar to the case in a cylindrical pore, when the value of a/b is close to unity (say,
greater than about 0.9), F/F0 for the motion of a slip sphere located at the center of a hardly slip spherical
cavity also first decreases with an increase in ba/g from ba/g = 0, reaches a minimum at some finite value
of ba/g, and then increases with an increase in ba/g to the limit ba/g!1, as shown by two curves in
Fig. 5b; otherwise, this normalized drag force is a monotonic increasing function of ba/g.

On the other hand, the steady translation of a slip solid sphere parallel to two no-slip plane walls at an
arbitrary position between them has been examined by using the boundary collocation method and numerical



Fig. 5. Plots of the normalized drag force F/F0 acting on a slip solid sphere translating along the axis of a circular cylindrical pore (solid
curves) versus the slip parameter ba/g or bw a/g with a/b as a parameter: (a) b!1; (b) bw!1; (c) bw = b; (d) b = 0; (e) bw = 0. The
dashed curves are plotted for the translation of an identical particle situated at the center of a spherical cavity for comparison.
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solutions for the hydrodynamic drag force acting on the particle were obtained as functions of the slip param-
eter ba/g and the relative distances from the particle center to the two plane walls (Chen and Keh, 2003). Anal-
ogous to the case of a fluid droplet discussed in Section 3, the drag force acquired by the parallel motion of a
slip solid particle when placed midway between the two walls is much smaller than that for the translation of
the particle along the axis of a circular cylindrical pore.
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6. Concluding remarks

In this work the slow translational motions of a spherical fluid or solid particle in a viscous fluid along the
axis of a circular cylindrical pore are studied theoretically, where the fluid may slip at the particle surface and
pore wall. A semianalytical method with the boundary collocation technique has been used to solve the Stokes
equations for the fluid flow field. The results for the hydrodynamic drag force exerted on the particle indicate
that the solution procedure converges rapidly and accurate solutions can be obtained for various values of the
particle’s relative viscosity or slip coefficient, the wall slip parameter, and the relative separation distance
between the particle and the confining boundary. It has been found that the wall-corrected drag force for each
case increases monotonically with an increase in the ratio of particle-to-pore radii, and equals infinity in the
limit. For a given ratio of particle-to-pore radii, the drag force acting on the particle normalized by the value
in the absence of the pore in general is an increasing function of the internal-to-external viscosity ratio or a
decreasing function of the dimensionless slip coefficients. When the pore wall is hardly slip and the value of
the ratio of particle-to-pore radii is close to unity, however, the normalized drag force may not be a monotonic
function of the particle’s relative viscosity or slip coefficient.

Some comparisons for the pore shape effects on the axial translation of a slip sphere have been made in
Sections 3 and 5. Under most conditions, the particle in a circular cylindrical pore acquires a lower hydrody-
namic drag force than in a spherical cavity but a higher drag force than in a slit pore. This trend, however, can
be reversed for the case of highly slippery particles and pore walls.

In Tables 1 and 2 as well as Figs. 2–5, we presented only the results for resistance problems, defined as
those in which the drag force F exerted by the surrounding fluid on the particle translating near the confin-
ing boundary is to be determined for a specified particle velocity U[equal to �(F0/6pga)(3g* + 3)/(3g* + 2) or
�(F0/6pga)(ba + 3g)/(ba + 2g)]. In a mobility problem, on the other hand, the external force F [equal to
6pgaU0(3g* + 2)/(3g* + 3) or 6pgaU0(ba + 2g)/(ba + 3g)] imposed on the particle is specified and the bound-
ary-corrected particle velocity U is to be determined. For the creeping motion of a spherical particle
along the axis of a cylindrical pore considered in this work, the ratio U/U0 for a mobility problem equals
the ratio (F/F0)�1 for its corresponding resistance problem. Thus, our results can also be applied to physical
problems in which the applied force on the particle is the prescribed quantity and the particle must move
accordingly.

Throughout Sections 2 and 3, we assume a spherical shape for the fluid droplet in the cylindrical pore. This
is correct for the creeping motion as the radius ratio a/b is small. When the value of a/b is relatively close to
unity, however, it is not necessarily the case for all capillary numbers, even quite small. In earlier studies, a
solution that calculates the droplet deformation requires a numerical approach such as a finite difference
method (Reinelt, 1987), finite element method (Westborg and Hassager, 1989), or boundary integral equation
technique (Martinez and Udell, 1990; Pozrikidis, 1992). On the other hand, it would be beneficial to compare
previous and our calculations to numerical results that can be obtained using an available commercial code
such as FLUENT of FEMLAB for a sequence of decreasing capillary numbers. Of course, a comparison
of our results in Table 1 for the case of a/b > 0.8, where no solution in this range is available in the literature,
can also be provided by such a commercial code.
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Appendix A. Definitions of some functions in Sections 2 and 4

The functions aðjÞin and cðjÞin for i and j equal to 1 or 2 in Eqs. (14)–(16) and (21) are defined by
að1Þin ðr; hÞ ¼ �rnþ2i�4½ðnþ 1ÞG�1=2
nþ1 ðcos hÞ csc h� ð2nþ 2i� 3ÞG�1=2

n ðcos hÞ cot h�; ðA:1Þ

að2Þin ðr; hÞ ¼ �rnþ2i�4½ð2nþ 2i� 3ÞG�1=2
n ðcos hÞ þ P nðcos hÞ�; ðA:2Þ
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cð1Þin ðr; hÞ ¼
Z 1

0

Sð1Þi ðxÞI0ðxr sin hÞr sin hþ Sð2Þi ðxÞI1ðxr sin hÞ
h i

x sinðxr cos hÞdx

� r�nþ2i�3 ðnþ 1ÞG�1=2
nþ1 ðcos hÞ csc h� 2ði� 1ÞG�1=2

n ðcos hÞ cot h
h i

; ðA:3Þ

cð2Þin ðr; hÞ ¼
Z 1

0

fSð1Þi ðxÞ½2I0ðxr sin hÞ þ I1ðxr sin hÞxr sin h� þ xSð2Þi ðxÞI0ðxr sin hÞg

� cosðxr cos hÞdx� r�nþ2i�3½P nðcos hÞ þ 2ði� 1ÞG�1=2
n ðcos hÞ�: ðA:4Þ
In Eqs. (A.3) and (A.4),
Sð1Þi ðxÞ ¼
Að1Þin ðxÞ I0ðbxÞ þ 2g

bw
xI1ðbxÞ

h i
� Að2Þin ðxÞI1ðbxÞ

bxI2
0ðbxÞ � 2I0ðbxÞI1ðbxÞ � bþ 2g

bw


 �
xI2

1ðbxÞ
; ðA:5Þ

Sð2Þi ðxÞ ¼
Að1Þin ðxÞ � bxI0ðbxÞSð1Þi ðxÞ

xI1ðbxÞ ; ðA:6Þ
where
Að1Þ1n ðxÞ ¼ �ð�1Þn=2 2xn

pn!
K1ðbxÞ; ðA:7Þ

Að1Þ2n ðxÞ ¼ ð�1Þn=2 2xn�2

pn!
½ðn� 2Þðn� 3ÞK1ðbxÞ � ð2n� 3ÞbxK0ðbxÞ�; ðA:8Þ

Að2Þ1n ðxÞ ¼ ð�1Þn=2 2xn

pn!
K0ðbxÞ � 2g

bw
xK1ðbxÞ

� �
; ðA:9Þ

Að2Þ2n ðxÞ ¼ ð�1Þn=2 2xn�2

pn!
ð2n� 3Þbxþ 2g

bw
xðn2 � 3nþ 3Þ

� �
K1ðbxÞ

�

� nðn� 1Þ þ 2g
bw

bx2ð2n� 3Þ
� �

K0ðbxÞ
	
; ðA:10Þ
and In and Kn are the modified Bessel functions of the first and second kinds, respectively, of order n. Note that
bw!1 for all functions appearing in Section 2.

The functions a�in and c�in for i equal to 1 or 2 in Eqs. (16d) and (21) are defined by
a�inðr; hÞ ¼ �rnþ2i�5½ðnþ 1Þðnþ 2i� 5ÞG�1=2
nþ1 ðcos hÞ cot h

� ðnþ 2i� 5Þð2nþ 2i� 3ÞG�1=2
n ðcos hÞ csc h

þ ð5� 2iþ ncot2hÞP nðcos hÞ sin h� nP n�1ðcos hÞ cot h�; ðA:11Þ
c�inðr; hÞ ¼ � cos h sin h½C�inðr; hÞ þ D�inðr; hÞ� � ðcos2 h� sin2 hÞ½C��in ðr; hÞ þ D��in ðr; hÞ�; ðA:12Þ
where
C�1nðr; hÞ ¼ �2r�ðnþ2Þ ðnþ 1Þðnþ csc2hÞG�1=2
nþ1 ðcos hÞ � ð3nþ 2ÞP nðcos hÞ cos h

h

þnP n�1ðcos hÞ
i
; ðA:13Þ

C�2nðr; hÞ ¼ 2r�n 2ð2n� 1þ cot2hÞG�1=2
n ðcos hÞ cos h� ðnþ 1Þðn� 1þ cot2hÞG�1=2

nþ1 ðcos hÞ
h

�ðnþ 2� 4 sin2 hÞP n�1ðcos hÞ þ 3nP nðcos hÞ cos h
i
; ðA:14Þ
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C��1nðr; hÞ ¼ �r�ðnþ2Þ
�

n cot h ðnþ 1ÞG�1=2
nþ1 ðcos hÞ þ P n�1ðcos hÞ

h i
:

þ ð3nþ 2Þ sin h� n csc h½ �P nðcos hÞ
	
; ðA:15Þ

C��2nðr; hÞ ¼ �r�n

�
2 2ðn� 1Þ sin h� ðn� 2Þ csc h½ �G�1=2

n ðcos hÞ:

þ ðn2 � n� 2ÞG�1=2
nþ1 ðcos hÞ cot hþ ðn� 4 sin2 hÞP n�1ðcos hÞ cot h

þnð3 sin h� csc hÞP nðcos hÞ
	

; ðA:16Þ

D�inðr; hÞ ¼ �2

Z 1

0

Sð1Þi ½3I0ðxr sin hÞ þ 2xr sin hI1ðxr sin hÞ�
n

þ Sð2Þi ½2xI0ðxr sin hÞ � I1ðxr sin hÞ=r sin h�
o
x sinðxr cos hÞdx; ðA:17Þ

D��in ðr; hÞ ¼ �2

Z 1

0

�
Sð1Þi ½I1ðxr sin hÞ þ xr sin hI0ðxr sin hÞ�:

þSð2Þi xI1ðxr sin hÞ
	

x cosðxr cos hÞdx: ðA:18Þ
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